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P R O B L E M S  OF T H E  R A D I A T I O N  T H E O R Y  
O F  H E A T  A N D  M A S S  T R A N S F E R  I N  S O L I D  
A N D  L I Q U I D  M E D I A  

N. I. Nikitenko UDC 536.2:533.1 

A mechanism and foundations of the radiation theory of heat and mass transfer that are based on the 
transfer of energy by photons emitted and absorbed by particles of  the substance are presented. Equa- 
tions of heat and mass transfer that transform, in the limit, to known phenomenological equations, en- 
ergy distribution functions of  atoms and their degrees of  freedom in diffusion processes, and 
expressions for the specific heat and the diffusion coeffic&nt that yield, as particular cases, the known 
Debye, Arrhenius, and Einstein formulas have been found. 

Kinetic processes in condensed bodies that are related to atomic migrations cause significant changes 
in their macro- and microproperties. To purposefully change these properties, it is necessary to have detailed 
knowledge of the processes themselves. These processes are characterized by the fact that their intensity is 
highly dependent on the temperature. For example, the diffusion coefficient of zinc in copper increases by a 
factor of 1014 as the temperature increases from 20 to 300°C [1]. 

Diffusion transfer in solids is usually related [1-5] to atomic-energy fluctuations, owing to which an 
atom can reach an energy level sufficient for breakage of  the bonds with neighboring atoms and for migration 
into the surroundings of  other atoms. It is suggested [2] that most of  the time an atom is found in the "settled" 
state where it oscillates with a frequency v = kT/h, and from time to time it performs diffusion transitions 
when it is given the activation energy u. The duration of  stay of the atom in the settled state between transi- 
tions is "c = ~0 exp (u/kT), where "c0 is a time of  the order of the oscillation period of the lattice atoms that 
corresponds to the frequency v (x0 = l0 -13 sec). The diffusion coefficient D is determined by an expression 
that is analogous to the Arrhenius formula for the temperature dependence of the rate of macroscopicaUy ob- 
served processes: 

D = odE/x = D O exp ( -  u/kT),  (l) 

where l is the mean distance traversed by the atom in a diffusion transition, which is usually assumed to be 
equal to the distance between neighboring atoms of  the body; (t is geometric factor that depends on the kind 
of crystal lattice; Do is the preexponential factor, Do = ctl2/xo • 

In solids, several diffusion mechanisms can occur; among them are exchange of places of  atoms of the 
crystalline structure with its vacancies, migration of  atoms over interstitial sites, simultaneous cyclic migration 
of several atoms, and exchange of places between two neighboring atoms. These mechanisms correspond to 
different values of the parameters Do and u [4, 5]. The diffusion coefficient is sometimes evaluated with the 
use of the Eyring theory of reaction rates, which also gives a dependence of the form of (1) with a preexpo- 

nential factor D O = AokT/h, where A0 is the transmission coefficient. However, it does not agree with usual 
data [6]. In [7, 8], the temperature dependence of the diffusion coefficient of  hydrogen and deuterium in nio- 
bium was obtained experimentally; with increase in the temperature one observes an accelerated increase in D, 
which cannot be described with the use of one exponent. 
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The theory of diffusion in liquids has been developed in three main directions. The first of  them is 
based on an analogy between the structures of a liquid and a solid and on the mechanism of migrations of 
molecules [2] with an activation energy lower than the activation energy in solids. The second direction starts 
from the general principles of statistical physics and the concept of local equilibrium [9, 10]. The density of 
molecules in each component is considered as a hydrodynamic variable changing slowly in space and time. 
Statistical equilibrium is established initially in macroscopically small volumes, and then the entire system 
switches to a state of  equilibrium at a rate proportional to the gradient of the concentration of the components. 
The diffusion coefficient is defined in terms of a correction to the local equilibrium distribution function. 

In the third direction, the diffusion of molecules in liquids is considered as a migration of small parti- 
cles with friction. This migration can be described using the Einstein equation to relate the diffusion coefficient 
of Brownian particles to their mobility: 

D = b k T ,  (2) 

where b is the mobility of the diffusing particles, determined as the coefficient of proportionality between the 
velocity of  a particle and the motive force in steady motion. For spherically symmetric particles, in accordance 
with the Stokes law, b = 1/(6rc~trp), where ~t is the viscosity of the medium and rp is the radius of the particle. 

In the works of Nikitenko [l l-14],  a radiation theory of heat conduction that is based on the mecha- 
nism of energy transfer by photons emitted and absorbed by particles of the substance has been constructed. In 
it Nikitenko obtained an integro-differential equation of energy transfer that makes it possible to explain the 
known discrepancies between the classical theory of heat conduction and experimental data and, in the limit, 
becomes: the Fourier equation of  heat conduction; the fundamental law of spectral-radiation intensity of  mi- 
croparticles of  a body, from which the Planck formula for the emissive power of  a blackbody as well as known 
and certain new functions energy distribution of particles follow; the potential of interatomic interaction repre- 
senting a function of  particle energy; an equation of state of  bodies from which Hooke 's  law, the law of ther- 
mal expansion, and the GriJneisen law follow. 

In this work, a mechanism and foundations of the radiation theory of heat and mass transfer in con- 
densed media are presented. A system of equations of heat and mass transfer that, in the limit, transforms to 
the equations of  the phenomenological theory of the thermodynamics of irreversible processes has been de- 
rived. Energy distribution functions of atoms and their degrees of freedom in diffusion processes have been 
found, and based on them the temperature dependences of  the specific heat and the diffusion and thermodiffu- 
sion coefficients of  the components of  a body have been obtained. 

The dynamics of diffusion processes in multicomponent condensed systems in a changing temperature 
field is determined by energy distribution functions of  the atoms and an intensity function of their transition 
from a given energy level to the next higher level in these processes. The indicated functions can be found 
based on the law of  spectral-radiation intensity. 

Let us consider a condensed body consisting of B components. Each atom of the body corresponds to 
three degrees of  freedom, and it can emit and absorb photons of  three different frequencies v. Assume that in 

a unit volume of  a condensed body there are nf~vi degrees of  freedom of atoms of the component ~, which have 
an energy Eiv = ihv,  i.e., are found at the i-th energy level with respect to the frequency v. Then, in accordance 
with the law of  spectral-radiation intensity, the energy emitted by these degrees of  freedom with the same 

probability in all directions in unit time comprises [l l] 

qfliv = el~v nfliv Ely = El~v nf~iv i h v ,  i = 1, 2 . . . . .  lily, (3) 

where et~ v is the emission coefficient of photons hv; Ii3 v is the limiting energy level at which the degree of 

freedom of a ~-component atom can be found, determined from the condition lf~vhv < uf~ < (lily + 1)hv; Ul~ is the 
activation energy at which the ~l-component atom performs a diffusion transition. Since in emission, the degree 
of freedom shifts to a zero energy level, emitting i quantums hv, the number of degrees of  freedom leaving the 
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level  in unit  t ime is noi v = q p i v / i h v  = I~[$vnf$iv. In a diffusion transition the a tom gives up its energy 
(Iltv + 1)hv and is brought to a zero energy level in a neighboring cell. 

I f  the density of photons hv is ~v, then the energy absorbed in unit time nl~iv by the degrees of  freedom 
[11] is qf$iv = nflivtYfsvC~v hv ,  where <Yl~v is the effective cross section of  absorption of photons hv by a [3-com- 
ponent atom; el~v/eil~v ¢f([3) [11]. The intensity function of the transition of the degrees of freedom of atoms in 
unit volume from the given energy level i to the level i + 1 as a result of absorption of the energy qlliv by them 

has the form 

" iv/  nfliv = q h v  = nf$iv aflv C~v , i = 1, 2 . . . . .  If~ v . 
(4) 

p 

All the degrees of freedom of [~-component atoms in unit volume nl~v = Z nfliv absorb the energy q~v = 
i 

nltv<Yflvc~vhv and emit the energy ql~v = Z qf$iv + (II3v + l)hvhl~/pvv in unit time. Under steady-state conditions the 
i 

, ¢  . •  . 

number of  degrees of freedom at the level i remains constant, i.e., ~nf3iv / t ) t  = nf3i-l,v --nf$iv -- nlliv = 0 and ql~v 

= ql~v. Going from the function nlliv t o  the probability wl~iv that a l -component  atom is found, with respect to 

the frequency v, at the i-th level W~iv = nfJiv/nflv and taking into account the normalization condition Z W~iv = 
i 

1, we obtain 

Wl~iv = [ 1 - exp [--~--~)] [ 1- exp ( - h v  (/,v + 1)hv);1 ex p - ' k T  0 EivjkTj' (5) 

(hv3 
= - -  exp - -  - 1 Xv C%v [ ( k T j  " 

(6) 

Here the function W~iv = 0 at i > II~v; el~v is the mean energy of the degree of freedom of the atom, determined 

f rom the relation el~v = hvZ inflv' tZ nflvi. When  lily >> 1 the func t ion  W~iv t ransforms to the Maxw e l l -  
i i 

Boltzmann distribution, and el~ v transforms to the expression for the mean energy of a quantum oscillator 

1 

ev = hv exp ~-~ - 1 ; by analogy with )Cv, the quantity ev is independent of the kind of component. 

The quantity Zv determines the total number of photons hv in unit volume that transfer in different 

directions and form Nv standing waves. The energy of one standing wave is Usw = ~ v h V / N v .  Since, according 
to classical physics, the frequency density distribution function of  standing waves in a blackbody is g(v) = 
8rcv2dv/c 3, the number of frequencies in the interval from v to v + dv comprises 8rcv2dv/(c3Nv). In this case, 

the density of  the energy of the black-radiation field is 

1 

tad 8°2 8 hv3 I I 
P v  ----- U s t v  c 3  - c 3  ceillvNv exp - 1 . 

Comparing this expression with the Rayleigh-Jeans formula, we find that efjv/(CGl~vNv) = 1. In this 

case formula (8) coincides with the Planck formula. 

842 



In general, the distribution function of  atoms by  energies can be obtained if the of  the distribution 
functions of__their degrees of  f reedom by frequencies v and over  the energy levels are known. In this case, the 
probability w a that an atom has an energy E when the state of  its degrees of  f reedom is characterized by the 
parameters Vl, il, v2, i2, v3, and i 3 (here, ilhvl + i2hv2 + i3hv3 = E) is determined by the product of  the prob- 
abilities that the degrees o f  f reedom of  the atom are found in the corresponding states. The probability w a that 
an atom has an energy E is found by summation of  the values of  w a for all possible atomic states fitting this 
energy. 

For solids, the function g(v), in general, is unknown; this being so, approximate representations of it 
are used. At a high and a usual ,temperature, when kT  >> hvmax, the Einstein hypothesis of the existence of a 
unique characteristic frequency v for each substance is a fairly good approximation of  the function g(v) [6]. In 
this approximation, the probability that an atom is found at the i-th energy level when its degrees of  freedom 
occupy levels il, i2, and i3 satisfying the condition i = il + i2 + i3 is 

W~'=W~i,vW~i2vW~i3 v- (i + 1) hv,/~ exp l- ~)"  

--a 
The probability that a ~-component particle has an energy ihv is W~iz = o~izW~i, where ~ i z  is the 

statistical weight of  the particle state, which is defined as the number of  ways in which i quanta hv can be 

distributed over z~ degrees of  freedom, ~ i z  = (i + z~ - 1) !/Ii ! (z13 - 1) t]. With diffusion transitions, the prob- 

ability that a particle is found at a zero energy level is determined, in accordance with the normalization con- ll3v 
dition, by the expression W~Oz = 1 - ~  w~iz. At I~v >> 1 i=1 

a [ / hv')f (_Eiv') 
wl~iv = o)~i z 1 - exp - -~  exp kT )" 

For an atom with three degrees of  freedom (z = 3), it fol lows from (9) that 

a ( i + 1 ) ( i + 2 ) [  hv'  (_  ihv ' )  W~i-- 2 1 - exp (-k-T/ l  exp k T ) "  

It can be shown that 

(9) 

~ (i+Z)!qi_i ! (I  Z~)  :+1 

L--0 
a, = ~. ihvw~i z It is seen and, correspondingly, E W~iz = 1, and the mean energy o f  an atom is ev = zev'. from Fig. 

1 that the energy distribution functions of  the atoms and their degrees of  f reedom differ markedly. Whereas for 
the degrees of  freedom of  the atoms the distribution function has a maximum at i = 0 and monotonically de- 
creases independently of  the temperature, for the atoms this function has a maximum at i > 0 at fairly high 
temperatures. Analogously, we can find the energy distribution functions in the case of  diffusion of  molecules 
and groups of  atoms. 

Since the probable number  of  diffusion transitions performed by an a tom of  kind [5 in unit time is 
h~/nl~ and in each transition the atom traverses a distance l[~, its mean velocity is v[~ = ll~h~l/nf~. The value 
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Fig. 1. Change in distribution functions of atoms w a (solid curves) and 
their degrees of  freedom w (dashed curves) over the energy levels i at dif- 
ferent temperatures: 1, 2) T = 573 K; 3, 4) 1145; 5, 6) 1753. 

of ll~ is determined by the parameters of an elementary crystalline cell, and therefore we can consider that 
11~ #f(nl~ , T). 

According to elementary kinetic theory [10], the density of the diffusion flux of atoms of kind 13 pass- 

. .+ 1 1 • 
ing through the z plane in the positive direction compnses Jl~ = ~ n~(z - l~)v~(z - l~) = -~ l~n~(z -/10, and in the 

opposite direction, j~ 1 =-~ l~h~(z + l~). Consequently, the resulting density of the diffusion flux of atoms of kind 

[3 in the z direction is 

= 1 , 3 h ~  1 2 
j~ =j~ - j ~  = - ff I~ ~Z = - 3 l~ o~¢ c ~zz (n~v" W~iv" Zv')" (10) 

Since the mechanism of transformation of activation energy in a diffusion transition of an atom is not 
understood yet, we considered two criteria for this transition: a) attainment of  the activation energy u13 by one 
of the degrees of freedom of the atom; b) attainment of the energy ul~ by the atom. 

Substituting expression (10) into the equation of conservation of mass for the component 13 [l 1, 15] 
dPlv'dt = --div (J[0, where PI~ = rnl~nl~ and J[~ = m~[~, ml~ is the mass of a 13-component atom, we obtain, with 
account for relations (4)-(6), an equation of mass transfer that can be represented in the form 

OP~ = div (D[~ grad PI~) + div grad 
Ot 

where DI~ and KI~ are the diffusion and thermodiffusion coefficients of the ~-component particles, 

(11) 

1 
D~ = -~ l~ Of~v cwl~iv ~v 

OD D 1 2 ~ (w[~iv ~v) (12) 
, K[~ = Tp[~ 3 T  = -3 Tp[~ 11~ o1~ v c OT 

Equation (11) is analogous in form to the equation of mass transfer that follows from the pheno- 
menological theory of the thermodynamics of irreversible processes [11, 15]. In the case of realization of the 
first criterion, in accordance with (5), (6), and (12), the diffusion and thermodiffusion coefficients are equal to 

(13) 
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Fig. 2. Diffusion coefficient D of carbon in Armco iron vs. temperature. 
The solid line shows a calculation by formula (13); the dashed line shows 
a calculation by formula (15); the points show experiment [1]. D, m/see; 
T, K -1 . 

1 ul~ ~ ) [  ( ~ _ _ ~ ) ~ 2  
K[~ = ~ p[~ l~ et~ ~-~ exp exp - 1 . (14) 

In the limit at u / k T > >  1 expression (13) transforms to the Arrhenius formula (1), and Do = l~elV'3, and 
at u /kT  << 1 this expression transforms to the Einstein formula (2), and b =/~g/(3u19. As is evident from Fig. 
2, formula (13) agrees well with experimental data on the diffusion coefficient of carbon in Armco iron ob- 
tained by different authors [1] in the temperature range from --40 to 800°C at ~el~ = 0.466.10 .5 m2/sec and 
ulv'k = 1.01.104 K. Note that according to the Einstein formula for the heat capacity, the characteristic fre- 
quency for carbon atoms is v = 1065 k/h. Here, Ii~v' = 9. 

When the second criterion is realized, as a result of  absorption of a photon hv', a diffusion transition 
can be performed by an atom for which the total energy of  the degrees of  freedom is I~vhv. The number of 

- a  a , a , , , 

these transitions in unit volume in unit time is determined by the formula nl~v" = 3nf~vWfj,,r~,,,v~f~vCXv. Accord- 
ing to (5), (8), and (12), the diffusion coefficient is 

( 1 - exp l - h v ' ) ]  2 - - ~  exp ( - (l13v' + 1) hv' ) 
(I[~v' + 1) (lily" + 2) kT 

At uff/kT>> 1, it follows from (15) that 

(15) 

a 19  u13 (ul~ 1][1 
Df~=2F~ef~--~v'~ 7 +  I'- - e x p ( - ~ ) ~ e x p ( - ~ T / "  (16) 

It is seen from Fig. 2 that formulas (15) and (16) agree well with experiment at I ~  = 0.52-10 -6 m2/sec and 
ulg'k = 1.01-104 K. 

According to the radiation theory of heat transfer, the equation of heat transfer for a multicomponent 
system under diffusion conditions can be written in the form 

bU (r, t) 
0t = - Qem + Qabs + Qdif + Qs + Qel. (17) 

Here Oem is the power of photons emitted at the instant t by particles of a unit volume whose position is 
characterized by the radius vector r; Qabs is the power of photons absorbed by particles of a unit volume and 
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emitted by other particles of the considered system; adif and Qs are the powers supplied to the considered unit 
volume as a result of diffusion of  particles and the action of external and internal energy sources; Qel is the 
power spent to change the electromagnetic-energy density. The problem of  changing the form of the equation 
of  transfer for the case of convective motion of  a medium was considered in [11]. 

The expressions for the functions entering into (17) were found under the following assumptions: the 
[]-component atoms can emit and absorb photons whose frequency does not exceed a certain limiting value 
vp; in the frequency range 0 < v <Vp standing waves are distributed with a density 8nv2dv/c3; the probable 
number yp of degrees of freedom of ~-component atoms forming a standing wave is independent of its fre- 
quency, i.e., npv/Nv = Ypv = Yp. The frequency v[~ was found from the condition that the total number of de- 
grees of freedom of ~-component atoms participating in oscillations is equal to triple the number np of  these 
atoms: 

8~ (18) ---~-~pv2dv = 3np. 
c 0 

* 3 
It follows from (18) that vp = [9npc/(8rcyp)] . The specific energy U S of the component ~ of a multicompo- 
nent body is 

c 0 

Op/T 
2 9kT4 n_p_~ f z3dz 

V evdV = O. ~ 
o 

e z _ 1 

where Op = hv*fv'k. The specific internal energy U of  a multicomponent body is 

OI~/T 3 
B np f z"dz . 

U = 9kT 4 Z "-~ .1 z 1 
~ l  V p o  e -  

(19) 

(20) 

The specific heat capacity per unit volume of a body is 

[ 30p/T 3 
OU B ~4 T [ z d z  

I ' - ~ J  z , C V = ' a T = 9 K  g=!~ np [ Vl~ o e - ,  
+-~3 [exp/-~T3/- 1]1 [ • 

°i t top) 
(21) 

If the change in the parameter vp in the process of  formation of a multicomponent system is negligibly small, 

the functions U and Cv are additive quantities, i.e., U = E Uppp and Cv = Y~ cppp. It should be noted that such 
P P 

dependences are widely used to describe heat processes in alloys and solutions. At low temperatures, the heat 

capacity is proportional to the cube of the temperature, Cv = 2.4~4kT3E n~/O~, and at high temperatures cv = 
P 

3nk, where n = X rip. These dependences are found to be in accordance with experimental data. In the particu- 
P 

lar case of a single-component body (B = 1), when 7P = 3(C/Vsound) 3/2, where Vsouna is the velocity of  sound, 

relation (20) becomes the Debye formula. The latter was obtained under the assumption that the change in the 
energy of solid-body particles is due to the propagation of elastic waves in its bulk, and each wave is realized 
by one degree of freedom of an atom [6]. However,  according to present views, an elastic wave arises as a 
result of collective oscillations of  the atoms. 

According to the law of  spectral-radiation intensity (3), the function Qem is 
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Qem (r, t) = - ~  Z -~v ~SV nf sv (r' t) ev (r' t) v2 clv " 
c 

(22) 

The energy flux Jsf~v(r, t) of photons hv that are absorbed by a [3-component particle with a radius 
vector r at the instant t and are emitted by an s-component particle with a radius vector r + 1] at the instant 
t -  [rl[/c is found from the relation 

Jsl~v (r, t) = ~13v esv ev (r + 1"1, t - I1"11/c) Gv (1]). (23) 

Here Gv(rl) is a function that determines the decrease in the energy flux in the case where the distance r I 
increases as a result of radial divergence of the emitted photons and their absorption by other particles of the 
body [11]: 

[I / G v (1"1, t) - ~t--Z-v exp - f I.t v Z t~liv nl~v r + ~, t - d~ , (24) 
- 4/1312 0 [3 

where ~tv is the coefficient of  overlapping of some particles by others, 0 < ~t v < 1, and for amorphous bodies 
Ixv--- I. According to (23) and (24), the function Qabs can be represented in the form 

Qabs='-'3-J" Z J'~... I~vnl3v r + 1 ] , t -  e v 
c V I~ v v c c 

X 

x ~ Cl~ v nl~ v (r, t) V 2 d v d V .  (25) 

The power of the energy sources (sinks) was assumed to be a prescribed function Qs = Qs(r, t, T). The 
quantities Qdif and Qel are determined by the expressions 

/ /., b / 1" tad V + * ( 2 6 )  
Qdif= Z U~lJ~ ; ~ e l = ~ t t | J  pv (r,t) d v ,  =max(vl~ ) .  

The function Gv(1]) decreases rapidly with increase in the distance 1]; this being so, in the neighbor- 
hood of the point r we can single out a subregion 1] < 1] = const outside of which the value of  the integrand 
in (24) and (25) can be neglected, ff 1] is much smaller than the characteristic dimension of  the body,, in 
determining Qab the integration can be performed in an arbitrary region that includes the sphere 1] = 1], in 
particular, in an unbounded region. Converting to Cartesian coordinates, expanding the function tp(x + 1]x, 
y + 1]y, z + 1]z, t -  I1]1/c), where <p = ev, nl~sv, in a Taylor series in the neighborhood of the point (x, y, z, t), 
and retaining terms up to third order in 1], we are led, after calculations analogous to the calculations presented 
in [11], from the integro-differential equation of heat transfer (17) to the hyperbolic equation 

1 T c ) ¥  Tc , --v + Qdif + Qs + Oel, 

where e and F are averaged values of ev and the expression entering into (24): ktv Z ~Sl~vnl~v = Fv. When 

c--~ oo and Pl~ = const this equation becomes the Fourier equation of heat transfer, which incorporates the as- 

sumption that the velocity of propagation of thermal disturbances is infinite [l l, 15]. The expression for the 
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thermal conductivity k = cve/3F 2 that follows from this limiting transition agrees with the well-known Debye 

approximate formula [ 11]. 

N O T A T I O N  

U, specific internal energy of the multicomponent body; t, time; h, Planck constant; ~[~v, effective cross 
section of absorption of photons hv by a IS-component atom; q~iv, specific radiation intensity of  the degrees of 
freedom of [3-component atoms oscillating with a frequency v and found at the i-th energy level; ql~v, specific 
spectral-radiation intensity of the degrees of freedom of IS-component atoms oscillating with a frequency v; g, 
frequency density distribution function of standing electromagnetic waves; Pl~, density of the component 9; cv, 
specific heat capacity per unit volume of the component 9; c, velocity of  light; e¢v, radiation coefficient; n~iv, 
density of particles oscillating with a frequency v and found at the i-th energy level; h~iv and h'~iv, numbers of 
degrees of freedom leaving the energy level i in unit time as a result of  emission and absorption of photons 
hv; k, Boltzmann constant; r, radius vector; 11, radius vector connecting a given point with an arbitrary point 
of the body; T, temperature; Eiv, energy of the degree of freedom of an atom oscillating with a frequency v 
and found at the i-th energy level; lily, limiting energy level at which the degree of freedom of the atom can 
be found; u, activation energy of the atom; Zv, density of photons of frequency v; W~iv, probability that a IS- 
component atom oscillates with a frequency v and is found at the i-th energy level; eiv, mean energy of the 
degree of  freedom of the atom; ~ thermal conductivity. Subscripts: ~ and s, ordinal numbers of the body com- 
ponents; v, frequency of oscillations of the degree of freedom of the atom; i, ordinal number of the energy 
level. 
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